
Reference Errors
The reference error is a rarely encountered issue in k. It is also once the most confusing. This article will explain why they happen and how to
avoid them.

Notes:
 All code examples must be executed from a fresh k session to get reliable results.
 is required reading for this article.K Variable Types

What is a Reference?

Functions can have references. Global variables appearing in a function will create a reference. A function can reference several global variables.
In the following example the anonymous function references the global :.foo

{.foo}

After stating the above function in a k session, you will notice that the .foo variable in the k tree has been initialized to . This is a side effect of _n
the reference and you can see that the act of referencing has a direct effect on the state of the k session.

Relative Reference

You can also create a reference to a global variable using its relative name. In the following code is referenced in an anonymous .k.bar
function:

{bar}

Again, will be initialized to _n.bar

Deep References

Relative and Absolute references and can also have further depth in the k tree using dot notation.

rel:{l.m.n}
abs:{.a.b.c}

You will see that the two function have initialized dictionaries to the complete depth of the dot assignments with the leaf value as ._n

Reference Error?

Take all functions currently defined in a k tree and list all their references using absolute paths.

rel:{l.m.n} / ref .k.l.m.n
abs:{.a.b.c} / ref .a.b.c

If you try to assign any part of these branches of the k tree such that the leaf cannot exist, you will get a reference error.

https://1010data.atlassian.net/wiki/spaces/K/pages/266764538/K+Variable+Types

rel:{l.m.n} / ref .k.l.m.n

.k.l:1 / l is no longer a dictionary to l.m cannot exist or l.m.n

.k.l.m:1 / m is not a dictionary so m.n cannot exit

.k.l.m.n:1 / fine, leaf intact

.k.l.m:.() / m.n no longer exists

Examples

An out of order Parse Error

f:{a.b}
a:1 / reference error

Assigning to will break 's reference to a 1 f a.b.

a:1
f:{a.b} / parse error

Assigning cannot be parsed because is not a dictionary.{a.b} a

Brackets

f:{a[`b]}
/ has a reference to a
a:1 / this assigment leaves the leaf, a, intact
.[f;,_n;:] / calling this function will break, on the 1[`b]
/ (1;"rank")
.k:.k _di `a / this will cause a reference error since we have removed
the leaf

One liner

a:{a.b}

Do Loops!?

It only breaks in raw execution, such that is a global variable. This one is a bit unexplained, as you can see that the expansion of the do loop
would not cause a reference error under any conceivable circumstances.

do[1;a:.();a.n:1]

	Reference Errors

