
K Variable Types
k_variable_types.k

/ k variable types
/ schreck20120221

/ Variables Types
/ 1. Local
/ 2. Global
/ 3. Parent-Local

/ SECTION 1. Local Variables
/ are only available to the function they are local to.
/ A variable is local to a function if:
/ A. It is an argument to the function.
/ B. There is a complete assignment inside
/ the function.
/ C. It is the root element of a dot assignment
/ inside the function.
/ notes:
/ * Complete assigment means strickly token:value
/ no brackets or dots allowed. The token to the
/ left of the bracket must be something that
/ can be used as a function argument.
/ valid: f:{[a]}
/ invalid: f:{[a.b]}; f:{[a[3]]}
/ * Dot assignment mean the left argument to the
/ assignment colon is a dot expression but not
/ and absolute reference, or it does not start
/ with a dot.
/ * There are a few more complicated assigments
/ that do not cause localization. If there are
/ brackets or operators to the left of the : or
/ you are using ammend functions (3/4-adic . and @)
/ then localization will not happend
/ * Functions defined within other functions have
/ limited access to their parent's locals. Covered
/ in section 3.

/
/ ex 1-1:complete assigment, rule 1A
{
 :a 0 / localizes a
 :a / is available to this function
 }[]
/ 0

 `a _in !.k / was not globalized
/ 0

/
/ ex 1-2:argument, rule 1B
{[]a / localizes a
 :a / is available to this function
 }[]1
/ 1

 `a _in !.k / not globalized
/ 0

/
/ ex 1-3:localization set values prior to assignment
/ to _n
{
 :before b
 :b 3
 :after b
 ()}[]before;after
/ (;3)

 `b _in !.k / not globalized
/ 0

https://1010data.atlassian.net/wiki/download/attachments/266764538/k_variable_types.k?version=2&modificationDate=1533662632959&cacheVersion=1&api=v2

/ ex 1-4:localization with dot assignment
{
 :u.a 1 / localized u as u:.,(`a;1;)
 }[]u
/ ,.(`a;1;)

 `u _in !.k / not globalized
/ 0

/ ex 1-5:calls from before localization by
/ dot assingment are null
{
 :before u
 :u.a 1 / localized u
 :after u
 ()}[]before;after
/ (;.,(`a;1;))

/ ex 1-6:Localization by assignment really acts like
/ reassigning an argument that was passed initially
/ as null
{[]args
 :before a
 :a 1;
 :after a
 ()}[]before;after
/ (;1)
{[]a;args
 :before a
 :a 1
 :after a
 ()}[][]before;after _n
/ (;1)

/ SECTION 2. Global Variables
/ are available to any function via the k tree.
/ Globals can be referenced either relatively or
/ absolutely. A variable is global if it is:
/ A. Relatively assigned outside of a function.
/ B. Absolutely assigned anywhere.
/ C. Referenced in a function where it is not local.
/ D. Relatively assigned with (::), unless its
/ been localized anywhere else in the same
/ function.
/ notes:
/ * Reference in a function, anything that isn't
/ locally available and you are making it global
/ at _d defaulting to _n value. _d is where
/ you were when you assigned or anonymously
/ executed the function. rule 2C.
/ * Any kind of non-localizing assignment will
/ affect the global.

/ ex 2-1:assigning absolute references in a function
/ will always change the global rule 2B
: a 2 3 4 / globalizes a, rule 1A
 `a _in !.k

/ 1
{
 : ().k.a , "something new";10 / globally sets .k.a, rule 1B
 }[]

()a~, "something new";10
/ 1

/ ex 2-2:retrieving global values in functions.
/ relative, rule 2A
:a 2
:{ }f a / points to the global .k.a
[]f

/ 2
:a 3
[]f / still points to .k.a even after it changed

/ 3

/ ex 2-3:absolute, rule 2B
:.k.a 2

:{ }f .k.a
[]f

/ 2
:.k.a 3

[]f
/ 3

/ ex 2-4:completely reassigning relative globals in
/ a function is only possible with ::, rule 2D
:a "string"

{ :: }[]a 3
a
/ 3

/ ex 2-5:assigning indices of relative global
/ vectors/dicts in a function is possible
/ with vector[indices]:new_vals notation
: a 2 3

{ []: }[]a 0 -2
a
/ -2 3
{ []: }[]a 1 4 5
a
/ (-2;4 5)
: ()a .

:a.b 1
:a.c 2

{ }[]a.b
/ 1
a
/ .((`a;1;);(`c;2;))

/ ex 2-6:localization overrides globals, rule 1A,2A
:a 2
:{f

 :()a 99 98;"string";,,,,`vvvvvvv / localizes a
 }a
[]f

/ (99 98;"string";,,,,`vvvvvvv)
a
/ 2

/ ex 2-7:any complete relative reassignment will
/ localize no matter the order, the variable
/ we be _n prior
: a 3 4
:{f

 []:a 0 -3 / type error, a is _n
 :a 2
 }a
[:]. f;_n;

/ (1;"type")
a
/ 3 4

/ SECTION 3. Parent-Local Variables
/ Functions defined within other functions
/ have the normal expected behavior with
/ access and modification of globals and
/ locals as explained in the first two
/ sections. However, they also have limited
/ access to the locals that were created
/ in its parent function. These will not act
/ the same as a normally localized variable.
/ A. Locals passed to a child are unavailable
/ to grand-children.
/ B. They are not dot-notation accessible by
/ the child.

/ These two subtleties can cause big problems,
/ avoid parent-local variables.

/ ex 3-1:normal local-like behavior
:a `global

{[]a / parent has localized a
 :out.parent a
 :{ }[]out.child a / child function has a parent-local a~`local
 }[]out `local
/.((`parent;`local;)
/ (`child;`local;))

/ ex 3-2:rule 3A
:a `global

{[]a / local to parent
 :out.parent a
 :{ }[]out.child a
 :{{ }[]}[]out.grandchild a
 }[]out `local
/.((`parent;`local;)
/ (`child;`local;)
/ (`grandchild;`global;))

/ ex 3-3:rule 3B
: ()a .

:a.b `global
{[]a
 :out.parent a.b
 :{ }[]out.child a.b
 }[()]out ., `b;`local;
/.((`parent;`local;)
/ (`child;`global;))

/ ex 3-4:more local-like behavior
{[]a
 []:a 0 1 / a is local, but updated to a~1 0
 :{child
 / child has a parent-local a~1 0
 []:a 1 2 / and updates it to a~1 2
 }[]a
 / parent local remains a~1 0
 ()}[]child;a 0 0
/ (1 2;1 0)

/ ex 3-5:more complex 3B
{[]a
 :a.b 1 / a is local, but updated to a~.((`b;1;);(`c;0;))
 :{out.child
 / child could have a parent-local a~.((`b;1;);(`c;0;))
 :a.c 2 / but does not since this localizes a
 }[]a
 / parent local remains a~1 0
 :out.parent a
 }[(() ())]out . `b;0 ; `c;0
/.((`child
/ .,(`c;2;)
/)
/ (`parent
/ .((`b;1;)
/ (`c;0;))
/))

/ ex 3-6:3-5 with brackets
{[]a
 []:a `b 1 / a is local, but updated to a~.((`b;1;);(`c;0;))
 :{out.child
 / child could have a parent-local a~.((`b;1;);(`c;0;))
 []:a `c 2 / this does not localize a like ex 3-4
 }[]a
 / parent local remains a~1 0
 :out.parent a
 }[(() ())]out . `b;0 ; `c;0

/.((`child
/ .((`b;1;)
/ (`c;2;))
/)
/ (`parent
/ .((`b;1;)
/ (`c;0;))
/))

/ ex 3-7:3B can cause errors
:a 1 / global a is an integer, cannot be dot-notation

{
 :a.b 1 / local a~.,(`b;1)
 {{ }[]}[]a.b
 }
/ this function cannot even be defined, parse error

	K Variable Types

